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SOME PROPERTIES OF THE GENERALIZED SOLUTIONS OF 
ONE-DIMENSIONAL TWO-PHASE POROUS FLOW PROBLEMS * 

A.V. DOMANSKII 

In the context of the one-dimensional approximation, some qualitative 
results are obtained on the behaviour of the generalized solutions of 
the problem of the displacement of a wetting by a non-wetting fluid in a 
homogeneous porous medium, where there is monotonic dependence on the 
initial data, an over-all fluid consumption, and a pressure gradient. 
The asymptotic behaviour at long and short times is studied. 

Assuming that the porous flow is linear or plane-parallel, we can write the system of 
equations of two-phase porous flow as 

-. n 
mst+z-'~(z-"v2)x=O, - -mst- f -x  (z v , ) x = O  ( t )  

v,  = - - k p i - l / ,  (s) p,~, ~ = t ,  2; p:, - -  P* = Pc (s) 

Here, s is the saturation of the non-wetting phase, 0<s<l, vl, p, are the porous flow 
velocity and pressure of the non-wetting (~ = 2) and wetting phases, m is the constant porosity, 

is the permeability, pl is the phase velocity, /i are the relative permeabilities, Pc is the 
capillary pressure, dpc/ds > 0, Pc (0) = 0; n = 0 for linear flow, n = I for radial flow. 

The initial-boundary conditions are 

z=v, p~= P1=P*= const (2} 
x= I, v,=0 (3> 

z = I, p~ = P0 = const, Ap ----- P0 -- P* > O (4) 

z = t ,  v~ = - - Q  (t) ..< o (5> 

s(z, o ) =  s ° ( z ) ,  v<z<l (6) 

Here, ~ = 0 in the linear case, v > 0 is the pore radius for radical flow, and p0, P., 
and Q are known quantities. Boundary condition (2) at the output section models the end-effect 
(/i/, p.367), whereby with simultaneous flow from the porous medium the pressures in the fluids 
equalize. Condition (3) means the absence of flow of displaced fluid at the input, while 
conditions (4) and (5) define the displacement mode, whereby the pressure or consumption of 
displaced fluid at the input section are given. 

It was shown in /2/ that the one-dimensional problem of the displacement of the non-wet- 
ting by the wetting fluid is well-posed in the light of the end-effect; and the same was proved 
in /3/ for displacement of the wetting by the non-wetting fluid (see also, A.V. Domanskii, 
Porous flow of non-wetting fluids at the pore face, Dissertation, Novosibirsk, 1985). 

We shall refer to (i)-(4), (6) as problem A, and to (i)-(3), (5), (6) as problem B. 
In the same way as in /3/, system (i) can be transformed to a single equation for the 

saturation 
st = (xna~ + V(t) b)x (7) 

while the boundary conditions can be written as 

x= I. x~,sx -4- Vb = O, s (v s, t) = O 

a = k/,/ixdpc/ds, b = ~*X, X --= (/n}h -{-/,~,)-I 
(8) 

In the case of problem B the total flow velocity V is equal to --2"-0, 
A it is given by the functional 

v = --2- (@ -- F (s (i, 0))/~ (0 
s 1 

F=~nI~d~',) I=SP(x's) dz' p=p,~,x-nX 
o v' 

while for problem 

(9)" 
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In future, .we shall mean by the solutions of problems A and B the generalized solutlons 
of problems (6)-(9) and (5)-(8) respectively. 

In accordance with the physical meaning of the experimentally measured functions of 
capillary pressure and relative permeabilities 

a (O) - -  a ( t )  = O, a > O ,  O < s < t  (1(I) 
b (~) = I, b (1) -- O; --db/ds, dF/ds> 0 

O < a - a ~ p ( x , s ) < a - -  const 

Thus, Eq.(7) degenerates for two values of the wanted solution. 
For problem A we make the extra assumptions 

s 0 ,  t ) =  t , t > 0 ,  A p > F ( 1 ) , F ( t ) < ~  Ni) 

We consider Eq.(7) in the domain Q: {~n<z<l. 0<t< T}, and G is the closure of 
Definitions of the generalized solutions of problems A and B are given in /3/, and their exist- 
ence was proved by the method of reqularization. Since our assertions, proved below for 
the classical solutions of Eq.(7), remain in force, by a suitable passage to the limit with 
respect to the reqularization parameter, for the generalized solutions, the regularization 
will be taken for granted in order to simplify the treatment. 

Theorem I. Let two distinct pressure gradients or total flows and initial saturation 
distributions be connected by the inequalities 

Ap I < Api, Qa(t)~ Q~(t),sx°(x)< s i ° ( x ) , -  a < Op/Os ~ 0 (t2) 

let condition (ii) hold, and let sj°(j - 1.2) be continuous monotonically non-decreasing func- 
tions. Then for the respective solutions ~ (z.t) of problem A or B, 

s , ( x , t ) ~ ( x , t ) , ( x , t )  ~ G. 

The proof is obtained by applying the maximum principle to the function 

s~ 

w = exp (-- [~t) 1 a ('0 dr, 
8a 

: COnSU 

for which a suitable equation and boundary conditions are obtained. Here we use the fact 
that the function 8 /3/ is monotonically non-decreasing with respect to z. The last condition 
in (12) is used to find the sign of the difference V2--Vx. 

CoPo~oi'y I. We consider the stationary solutions ~ (z) 
with constant Apo and ~. Let 

Q(t) < ~,  Ap ~ Apo, s°(x)< ~ (~) 

Then, by Theorem 1, 

s ( z , t )  ~ ~ (x) 

in G. 

to the function 

of problems A and B, obtained 

(13) 

04) 

Theorem ~. If, in addition to the last condition in (12), Qt > 0, (a (,°) sxc)x > 0, then st > 0 

The proof is obtained by applying, in the same way as in Theorem 1, the maximum principle 

Col"o~al~y 8. In the conditions of theorems 1 and 2, we have a monotonic increase in the 
saturation function with respect to z and t. Then, it follows from the first two of Eqs. (i) 
that the porous flow rate of each phase is monotonic with respect to X, and from the second 
and third of Egs. (1) and condition (3), that v, ~ 0 and p,x > O. Hence, noting the last equation 
of (i), we have p~>0 and hence ~0 

Lemmu 2. Let 

-~ (z) ~ 0 [vi, tl, [ R,. f ~ tto 

O~TI~6, i ~ R d z ~ ,  'q-x ~ Lq (,v~, t), 0 < q < l  
.,al 

T h e n ,  
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Proof. Given any 

/ ~  \1/(q+1) 

Y, "to ~ [~', t ] ,  by Holder's inequality, 

q 
r - -  q ~ - I  

I 1 

It remains to use proposition i of /4/. 

Then 
Theorem ~. 

Let 

0 ~ Qo -- Q ~ L~ (0, oo), a-z~p/a, < ~,, (Ap -- F 0))-* (15) 

Let the conditions of Theorems 1 and 2, and (13), (15) hold, and let Ap = Ap0. 

s~ 

0 -~ max a (~:) dx ~ Lt -g, 0 < ~ < -~- ,  
x 

x, L = ¢onst (16) 

Scheme of p~oof. Consider the case of problem A , n  = O. Subtracting from the stationary 
equation for % the equation on 8 of type (7), we multiply the resulting equation by 

n = sinZ/~ ~ + cosz/~ ~ - -  i + z/~z(2 - -  ~) (t7) 

We integrate this relation with respect to z, and then integrate by parts in the light of 
boundary conditions (8) for s,%. We obtain an equation from which, using (14) and the con- 
ditions on functions p,b of (12), (i0), (15), and then integrating with respect to t, we have 

t 1 1 e~ 

I v(~)d't..~--~- ,) ~(=)dx--S, O< 
0 0 0 s 

It follows from the last inequality, since s is monotonic with respect to t, that 0~ Y ~  
Mt -~. Applying Lemma 1 (which is possible, since it was shown in /3/ that a(~)s~, and (s0) so= 
are uniformly bounded with respect to z, t), we obtain (16) for sufficiently large t. 

For radial flow, we can find ~ from (17) after replacing x by ~=In(v-~=)/lnv-~. 
In the case of problem B, it is sufficient to require that the first condition (15) holds 

and to use t~e functions ~ = s*nZ/~z, . = O, ~ = smZ/~, n= 

NOte. The stationary solutions of problems A and B are (n = O) 

s ° = ( t ,  z z ~ x ~ l  

i . (T) 
o 

where F0 -z is the inverse of F0 (s) and x z is given for problem A by 

n = (~ + (~p - -  po O))/Fo 0 ) ) -L  Ap > p~ (i) 

and in the case of problem B, by =z= Fo(1)/Qo, Qo>F(1). 
If Ap<po(1) or Q0<F00), then %(I)<I. 
These solutions are obtained in /5/ and describe the condition of capillary blocking of 

the displaced wetting fluid, the existence of which leads to incomplete extraction of hydro- 
carbon. 

We define the function ~ (z, t) by the equation 

,(~) f 0, ~ < 0  

= z - - i - t - e t ,  i ~=  Fo(i)/~z; ~*, e = c o n s t > 0 .  

Theorem 4. Let 
~ , ~ t ,  Iz < rain ( - -  F) =-~ Iz+,  O < e ~ m i n ( - - d b / d # ) ( p ÷ - - ~ t )  

t ,  $ 
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T h e n ,  f o r  t ~ t 1 : ~1 b-1 

s ( x , t ) > O ,  O < x < l .  

Scheme of the proof. 

we have condition (ll), and for t ~ t2 = e-~ > h, the functlon 

We introduce the function V by the equation 

I a (r) d r  = (~t) v ~ ~ = cons t  e x p  

0 

In the domain G+ = {i -- et ~ x < i,0 < t < t2} it will satisfy an equation and boundary con- 
dition from which, since W.s > 0 and in G+: ~xx = ~, ~x = ~, ~t = ~ (the subscript ~ means 
differentiation with respect to 5) in the case of large ~, we find by the maximum principle 
that t , ~  0 in G+ Hence the theorem follows. 

CoroZZGry 3. Using Theorem 4 and the dissertation mentioned near the start,,we can show 
that, for small t, the quantity s0, t) increases as ~-*(t). 

An example of relative permeability and capillary pressure functions which satisfy the 

conditions of Theorems 1-4 is given by 

/1 ($) = (I -- $)(I -- s ~- 1/382), /z (8) = ~o (I -- /1) -~ (i -- ~o) 85 (3 -- 28) 

Pc (s) - -  [ s " ( l , t  - -  s)] '/', p° = ~2/~, < t 
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THE SOLUTION OF PROBLEMS OF ELASTICITY THEORY BY THE METHOD OF 
ANALYTIC FUNCTIONS * 

S.A. KULIYEV 

Sherman's method /3/ is used to investigate some two-dimensional problems 
of elasticity theory for multiply connected regions. The solution is 
constructed by series expansion of the Kolosov-Muskhelishvili potential. 
Using Faber polynomials and conformal mapping, the original problem is 
reduced to the solution of linear systems of infinite algebraic equations 
in the expansion coefficients of analytical functions. The solution 
procedure is demonstrated by two examples. 

Many problems of elasticity theory reduce /1-3/ to finding analytic functions of the 
complex variable z = z + ty that are regular (or sinlge-valued) in a given region S and 
satisfy appropriate initial conditions. 

For the plane problem (the first boundary-value problem), when S is bounded by several 
smooth closed contours L,, L2 ..... L~ such that the last contour encloses all the previous 
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